9.3 Homework Problems: Functions of Logarithms and Solving Logarithmic Equations
1. Write the logarithmic expression in a different form (if not possible, write N/A)
a. log [latex]\left(\frac{x}{y^3}\right)[/latex]
b. log (a) + log (b)
c. – ln ([latex]\frac{1}{x}[/latex])
d. ln (a + b)
2. Find the value of each expression
a. log2 (32)
b. log5 [latex]\left(\frac{1}{125}\right)[/latex]
c. [latex]\log_2\sqrt8[/latex]
d. [latex]3^{\log_5(5)}[/latex]
3. Use the properties of logs to fully expand each expression
a. logb (5x4)
b. logb (x2y)4
c. log5 (xy)-2
d. log5 (21x2y2/3)
e. [latex]log\ \frac{\sqrt{x^5}}{(x+4)^3}[/latex]
4. Use the properties of logs to write each expression as a single log
a. 2 logb (3) + logb (x) – 2 logb (5)
b. logb (x) – 2 logb (y) – 2 logb (z)
c. 3 log5 (y) – [latex]\frac{1}{2}[/latex]log5 (x)
d. –[latex]\frac{2}{3}[/latex]log2 (x) – [latex]\frac{1}{3}[/latex]log2 (y) + [latex]\frac{2}{3}[/latex]log2 (z)
5. Solve for x (round to the nearest hundredth)
a. log (225) ÷ log (15) = log (x)
b. log (x) + log (x-1) = log (4x)
c. log2 (x-2) + log2 (x+1) = 2
d. e 2x – 2e 2x = -15
e. ln (x) = ln (5) – ln (2)
f. 32x + 1 = 2x – 2
g. ln ((3)(x+1)) = 4