"

9.3 Homework Problems: Functions of Logarithms and Solving Logarithmic Equations

1. Write the logarithmic expression in a different form (if not possible, write N/A)

a.  log [latex]\left(\frac{x}{y^3}\right)[/latex]

b.  log (a) + log (b)

c.  – ln ([latex]\frac{1}{x}[/latex])

d.  ln (a + b)

2. Find the value of each expression

a.  log­2 (32)

b.  log[latex]\left(\frac{1}{125}\right)[/latex]

c.  [latex]\log_2\sqrt8[/latex]

d.  [latex]3^{\log_5(5)}[/latex]

3. Use the properties of logs to fully expand each expression

a.  logb (5x4)

b.  log­b (x2y)4

c.  log5 (xy)-2

d.  log­5 (21x2y2/3)

e.  [latex]log\ \frac{\sqrt{x^5}}{(x+4)^3}[/latex]

4. Use the properties of logs to write each expression as a single log

a.  2 logb (3) + log­b (x) – 2 log­b (5)

b.  logb (x) – 2 log­b (y) – 2 log­b (z)

c.  3 log5 (y) – [latex]\frac{1}{2}[/latex]log5 (x)

d.  –[latex]\frac{2}{3}[/latex]log2­ (x) – [latex]\frac{1}{3}[/latex]log2­ (y) + [latex]\frac{2}{3}[/latex]log­2 (z)

 

5. Solve for x (round to the nearest hundredth)

a.  log (225) ÷ log (15) = log (x)

b.  log (x) + log (x-1) = log (4x)

c.  log2 (x-2) + log2 (x+1) = 2

d.  e 2x – 2e 2x = -15

e.  ln (x) = ln (5) – ln (2)

f.  32x + 1 = 2x – 2

g.  ln ((3)(x+1)) = 4

 

Unit 9.3 Printable Copy

License

ESET1140: Intermediate Technical Algebra Copyright © 2024 by froenico. All Rights Reserved.