"

Unit 14.2 Matrices (Continued)

Finding the Inverse of a 2×2 Matrix

Finding the inverse of a matrix can be useful for solving systems of equations. In order for a matrix to have an inverse, it must be a square matrix

If you have the matrix M = [latex]\left[\begin{matrix}a&b\\c&d\\\end{matrix}\right][/latex]

M is a 2×2 matrix. To find the inverse of a 2×2 matrix you need to first find the determinate

Determinate of a 2×2 matrix

[latex]det={ad-bc}[/latex]

The inverse of a 2×2 matrix is 1 over the determinate times the transpose.

Inverse of a 2×2 matrix

[latex]M^{-1}=\frac{\ 1}{det}\cdot\left[\begin{matrix}d&-b\\-c&a\\\end{matrix}\right][/latex]

Finding the inverse of a 2×2 matrix

Given that  [latex]M=\left[\begin{matrix}2&6\\1&4\\\end{matrix}\right][/latex]

Find M-1

First find the determinate

[latex]det=ad-bc=\left(2\ast4\right)-\left(6\ast1\right)=2[/latex]

Then find the transpose

transpose = [latex]\left[\begin{matrix}d&-b\\-c&a\\\end{matrix}\right][/latex] = [latex]\left[\begin{matrix}4&-6\\-1&2\\\end{matrix}\right][/latex]

Multiply 1/det by the transpose

[latex]M^{-1}=\frac{1}{det}\left[\begin{matrix}d&-b\\-c&a\\\end{matrix}\right]=\frac{1}{2}\left[\begin{matrix}4&-6\\-1&2\\\end{matrix}\right]=\left[\begin{matrix}2&-3\\-\frac{1}{2}&1\\\end{matrix}\right][/latex]

Finding the Inverse of a 3×3 Matrix

Finding the inverse of a 3×3 matrix involves the same steps, find the determinate and multiply it by the transpose of the matrix, but there are a few extra steps to find the transpose.

For the matrix [latex]M=\ \left[\begin{matrix}a&b&c\\d&e&f\\g&h&i\\\end{matrix}\right][/latex]

Determinate of a 3×3 matrix

[latex]det={a\cdot\left(ei-hf\right)-b\cdot\ }(di-gf)+c\cdot(dh-eg)[/latex]

Before finding the transpose, we first need to find the cofactor of the 3×3 matrix

Cofactor of a 3×3 matrix

[latex]C=\left[\begin{matrix}(ei-fh)&-(di-fg)&(dh-eg)\\-(bi-ch)&(ai-cg)&-(ah-bg)\\(bf-ce)&-(af-cd)&(ae-bd)\\\end{matrix}\right]=\left[\begin{matrix}j&k&l\\m&n&o\\p&q&r\\\end{matrix}\right][/latex]

Then we find the transpose of that matrix by swapping the rows and columns

Transpose of a 3×3 Matrix

[latex]C^T=\ \left[\begin{matrix}j&m&p\\k&n&q\\l&o&r\\\end{matrix}\right][/latex]

The inverse of a 3×3 matrix is 1 over the determinate times the transpose

Inverse of a 3×3 matrix

[latex]M^{-1}=\frac{1}{det}\cdot\ C^T[/latex]

 

License

ESET1140: Intermediate Technical Algebra Copyright © 2024 by froenico. All Rights Reserved.